ESTADOS FISICOS DEL CARBONO:
Se conocen cinco formas alotrópicas del carbono, además del amorfo: grafito, diamante, fullerenos, nanotubos y carbinos.2
Una de las formas en que se encuentra el carbono es el grafito, que es el material del cual está hecha la parte interior de los lápices de madera. El grafito tiene exactamente los mismos átomos del diamante, pero por estar dispuestos en diferente forma, su textura, fuerza y color son diferentes. Los diamantes naturales se forman en lugares donde el carbono ha sido sometido a grandes presiones y altas temperaturas. Los diamantes se pueden crear artificialmente, sometiendo el grafito a temperaturas y presiones muy altas. Su precio es menor al de los diamantes naturales, pero si se han elaborado adecuadamente tienen la misma fuerza, color y transparencia.
El 22 de marzo de 2004 se anunció el descubrimiento de una sexta forma alotrópica: las nanoespumas.3
La forma amorfa es esencialmente grafito, pero no llega a adoptar una estructura cristalina macroscópica. Esta es la forma presente en la mayoría de los carbones y en el hollín.
Disposición geométrica de los orbitales híbridos sp.
Disposición geométrica de los orbitales híbridos sp2.
A presión normal, el carbono adopta la forma del grafito, en la que cada átomo está unido a otros tres en un plano compuesto de celdas hexagonales; este estado se puede describir como 3 electrones de valencia en orbitales híbridos planos sp2 y el cuarto en el orbital p.
Las dos formas de grafito conocidas alfa (hexagonal) y beta (romboédrica) tienen propiedades físicas idénticas. Los grafitos naturales contienen más del 30% de la forma beta, mientras que el grafito sintético contiene únicamente la forma alfa. La forma alfa puede transformarse en beta mediante procedimientos mecánicos, y ésta recristalizar en forma alfa al calentarse por encima de 1000 °C.
Debido a la deslocalización de los electrones del orbital pi, el grafito es conductor de la electricidad, propiedad que permite su uso en procesos de electroerosión. El material es blando y las diferentes capas, a menudo separadas por átomos intercalados, se encuentran unidas por enlaces de Van de Waals, siendo relativamente fácil que unas deslicen respecto de otras, lo que le da utilidad como lubricante.
Disposición geométrica de los orbitales híbridos sp3.
A muy altas presiones, el carbono adopta la forma del diamante, en el cual cada átomo está unido a otros cuatro átomos de carbono, encontrándose los 4 electrones en orbitales sp3, como en los hidrocarburos. El diamante presenta la misma estructura cúbica que el silicio y el germanio y, gracias a la resistencia del enlace químico carbono-carbono, es, junto con el nitruro de boro, la sustancia más dura conocida. La transición a grafito a temperatura ambiente es tan lenta que es indetectable. Bajo ciertas condiciones, el carbono cristaliza como lonsdaleíta, una forma similar al diamante pero hexagonal.
El orbital híbrido sp1 que forma enlaces covalentes sólo es de interés en química, manifestándose en algunos compuestos, como por ejemplo el acetileno.
Fullereno C60.
Los fullerenos tienen una estructura similar al grafito, pero el empaquetamiento hexagonal se combina con pentágonos (y en ciertos casos, heptágonos), lo que curva los planos y permite la aparición de estructuras de forma esférica, elipsoidal o cilíndrica. El constituido por 60 átomos de carbono, que presenta una estructura tridimensional y geometría similar a un balón de fútbol, es especialmente estable. Los fulerenos en general, y los derivados del C60 en particular, son objeto de intensa investigación en química desde su descubrimiento a mediados de los 1980.
A esta familia pertenecen también los nanotubos de carbono, que pueden describirse como capas de grafito enrolladas en forma cilíndrica y rematadas en sus extremos por hemiesferas (fulerenos), y que constituyen uno de los primeros productos industriales de la nanotecnología.
APLICACIONES DEL CARBONO:
El principal uso industrial del carbono es como componente de hidrocarburos, especialmente los combustibles fósiles (petróleo y gas natural). Del primero se obtienen, por destilación en las refinerías, gasolinas, queroseno y aceites, siendo además la materia prima empleada en la obtención de plásticos. El segundo se está imponiendo como fuente de energía por su combustión más limpia. Otros usos son:
El isótopo radiactivo carbono-14, descubierto el 27 de febrero de 1940, se usa en la datación radiométrica.
El grafito se combina con arcilla para fabricar las minas de los lápices. Además se utiliza como aditivo en lubricantes. Las pinturas anti-radar utilizadas en el camuflaje de vehículos y aviones militares están basadas igualmente en el grafito, intercalando otros compuestos químicos entre sus capas. Es negro y blando. Sus átomos están distribuidos en capas paralelas muy separadas entre sí. Se forma a menos presión que el diamante. Aunque parezca difícil de creer, un diamante y la mina de un lapicero tienen la misma composición química: carbono.
El diamante Es transparente y muy duro. En su formación, cada átomo de carbono está unido de forma compacta a otros cuatro átomos. Se originan con temperaturas y presiones altas en el interior de la tierra. Se emplea para la construcción de joyas y como material de corte aprovechando su dureza.
Como elemento de aleación principal de los aceros.
En varillas de protección de reactores nucleares.
Las pastillas de carbón se emplean en medicina para absorber las toxinas del sistema digestivo y como remedio de la flatulencia.
El carbón activado se emplea en sistemas de filtrado y purificación de agua.
El carbón amorfo ("hollín") se añade a la goma para mejorar sus propiedades mecánicas. Además se emplea en la formación de electrodos (p. ej. de las baterías). Obtenido por sublimación del grafito, es fuente de los fulerenos que pueden ser extraídos con disolventes orgánicos.
La fibra de carbono (obtenido generalmente por termólisis de fibras de poliacrilato) se añade a resinas de poliéster, donde mejoran mucho la resistencia mecánica sin aumentar el peso, obteniéndose los materiales denominados fibras de carbono.
Las propiedades químicas y estructurales de los fulerenos, en la forma de nanotubos, prometen usos futuros en el incipiente campo de la nanotecnología.
HIDROCARBUROS . (nombres) .
La Nomenclatura de Hidrocarburos Acíclicos es una metodología establecida para denominar y agrupar los hidrocarburos cuyas cadenas principales o secundarias son todas abiertas. Cuando todos los carbonos del compuesto tienen cuatro enlaces simples se denominan alcanos acíclicos. Los que presentan dobles ligaduras se denominan alquenos acíclicos y los que presentan triples ligaduras, alquinos acíclicos.1
De denomina alcano lineal al que carece de cadenas laterales. Los nombres de los alcanos lineales son la base de la denominación estructural del resto de los nombres de compuestos orgánicos. Los primeros cuatro miembros de la serie homóloga de alcanos acíclicos se denominan metano, etano, propano y butano. Los nombres de los miembros superiores a cuatro carbonos de esta serie se construyen con un prefijo numeral griego, seguido del sufijo "-ano", con eliminación de la "a" terminal de la expresión numérica. Ejemplos de estos nombres se muestran en la tabla siguiente.
1.- metano
2.- etano
3.- propano
4.- butano
5.- pentano
6.-hexano
7.-heptano
8.-octano
9.- nonano
10.- decano
11.-undecano
12.-dodecano
13.-tridecano
14.-tetradecano
15.-pentadecano
16.- hexadecano
17.- heptadecano
18.- octadecano
19.- nonadecano
20.- icosano
1.- metano
2.- etano
3.- propano
4.- butano
5.- pentano
6.-hexano
7.-heptano
8.-octano
9.- nonano
10.- decano
11.-undecano
12.-dodecano
13.-tridecano
14.-tetradecano
15.-pentadecano
16.- hexadecano
17.- heptadecano
18.- octadecano
19.- nonadecano
20.- icosano
ISOMERÍA
La isomería es una propiedad de ciertos compuestos químicos que con igual fórmula molecular (fórmula química no desarrollada) es decir, iguales proporciones relativas de los átomos que conforman su molécula, presentan estructuras moleculares distintas y, por ello, diferentes propiedades. Dichos compuestos reciben la denominación de isómeros. Los isómeros son compuestos que tienen la misma fórmula molecular pero diferente fórmula estructural y, por tanto, diferentes propiedades. Por ejemplo, el alcohol etílico o etanol y el éter dimetílico son isómeros cuya fórmula molecular es C2H6O.
Hay dos tipos básicos de isomería: plana y espacial.1
[editar]Isomería constitucional o estructural
Forma de isomería, donde las moléculas con la misma fórmula molecular, tienen una diferente distribución de los enlaces entre sus átomos, al contrario de lo que ocurre en la estereoisomería.
Debido a esto se pueden presentar 3 diferentes modos de isomería:
• Isomería de cadena o esqueleto.- Los isómeros de este tipo tienen componentes de la cadena acomodados en diferentes lugares, es decir las cadenas carbonadas son diferentes, presentan distinto esqueleto o estructura.
Un ejemplo es el pentano, del cual, existen muchos isómeros, pero los más conocidos son el isopentano y el neopentano
• Isomería de posición.- Es la de aquellos compuestos en los que sus grupos funcionales o sus grupos sustituyentes están unidos en diferentes posiciones.
Un ejemplo simple de este tipo de isomería es la del pentanol, donde existen tres isómeros de posición: pentan-1-ol, pentan-2-ol y pentan-3-ol.
• Isomería de grupo funcional.- Aquí, la diferente conectividad de los átomos, puede generar diferentes grupos funcionales en la cadena. Un ejemplo es el ciclohexano y el 1-hexeno, que tienen la misma fórmula molecular (C6H12), pero el ciclohexano es un alcano cíclico o cicloalcano y el 1-hexeno es un alqueno. Hay varios ejemplos de isomeria como la de ionización, coordinación, enlace, geometría y óptica.
No hay comentarios:
Publicar un comentario